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COMMENT 

A new renormalisation-group weight function for linear 
polymers 

N-C Chaof 
Department of Physics, Northeastern University, Boston, Massachusetts 021 15,  USA 

Received 9 August 1984 

Abstract. We propose a true centre rule weight function for treating linear polymers with 
a cell position-space renormalisation group (PSRG). For a cell-to-cell PSRG, our preliminary 
results for small cells give the critical fugacity per monomer K *  = 0.3886 and the critical 
exponent u=O.7471. Accurate results are also obtained for Y with a cell-to-bond PSRG. 

Polymers are macromolecules formed by monomers with a typical number of about 
lo4. Statistical mechanics is therefore highly appropriate for studying such systems. 
In particular, the lattice statistical model of a self-avoiding walk (SAW) seems able to 
take account of the essential features of a linear polymer including the excluded-volume 
effect. The SAW problem is characterised by a starting point for all walks, which are 
free to go in any direction subject only to the constraint that such a walk does not 
intersect itself. 

One of the most interesting statistical aspects for polymers is the analogy between 
polymerisation and the ordinary thermal critical phenomena. For a linear polymer in 
dilute solution, it is well known that the dependence of the mean end-to-end distance 
5 on the molecular weight M is characterised by a critical exponent v, i.e., 6 - M u  as 
M + a .  For simplicity, we will consider a linear polymer as described by only one 
parameter K which is the fugacity per monomer. It can then be argued that the 
parameter M-’ corresponds to IK - K,J, where K c  is the fugacity per monomer for 
the system to be at criticality (see Redner and Reynolds 1981). 

Several approaches have been employed to evaluate v (see Stanley et a1 1982). 
Here we are interested in a cell position-space renormalisation group ( PSRG). Within 
a renormalisation group scheme, the invariance of the characteristic quantity 6 + ~3 

upon repeated length rescaling of the system corresponds to a fixed point at criticality. 
A cell PSRG has been carried out by de Queiroz and Chaves (1980) using a modified 
scheme of Reynolds e? al ( 1977) for bond percolation and incorporating the characteris- 
tics of non-intersection as well as a fixed starting point for the paths. This scheme is 
generally referred to as the corner rule. Subsequently, Redner and Reynolds (1981) 
have carried out a thorough investigation for different weight functions, such as the 
centre rule, transfer matrix, multicells, equal averaging and toroidal rule and have 
obtained very impressive results. In particular, the toroidal rule gives K,= 
0.3791 * 0.0001 and v = 0.756 * 0.004 on the square lattice compared with K ,  = 
0.379003 * 0.00001 5 of Sykes e? al (1972) and the classical value Y = 0.75 predicted by 
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the Flory theory (Flory 1953). Furthermore, it appears that if the estimates of the 
toroidal rule are correct, then the classical value in two dimensions can be excluded. 
However, since the toroidal rule still has some defects (Redner and Reynolds 1981), 
it is worthwhile investigating other weight functions which may give an independent 
check on these estimates. 

To perform a PSRG calculation for a SAW on the square lattice, we first partition 
the lattice into cells of size b in the same manner as is done for bond percolation by 
Reynolds et a f  (1977); thus the 6 = 1 cell, the elementary cell, is just two bonds 
connected perpendicular to each other, the b = 2 cell can be formed by joining 2 x2 
elementary cells into a square and so on. For 6 even, we choose the site at the centre 
of the cell as the starting point (the origin) for all SAWS; whereas for 6 odd, each of 
the four corners of the square at the centre of the cell can be chosen as the origin and 
a consistent choice of the origin should be made for all cells. The families of cells 
with b even and odd are therefore slightly different due to the location of the origin. 
Our choice of the origin seems more natural compared to the corner rule of de Queiroz 
and Chaves (1980) and the centre rule of Redner and Reynolds ( 198 1, hereafter referred 
to as the edge-centred rule), for which the origin is chosen at a corner and at the centre 
of an edge respectively. A spanning SAW is defined as a path that traverses a cell from 
one edge to the opposite edge via the origin. Each spanning path actually consists of 
two non-intersecting SAWS starting from the origin. Effectively, we consider only the 
SAWS that can reach one edge and still allow the existence of a SAW to reach the 
opposite edge. However, this is already a great improvement compared to, for example, 
the corner rule and the edge-centred rule, which take into account, respectively, only 
the SAWS that are confined to a wedge-shaped region with opening angle &r and to a 
half-plane. Furthermore, in order to eliminate any ramified configurations that may 
occur at the 'interfacing' when cells are connected, we choose to delete all the bonds 
on the edge that spans the traversing SAWS. This is an improvement over all the weight 
functions used before, including the toroidal rule. Therefore, apart from the fixed 
origin, our cells are the same as those of Reynolds et a1 (1977) for bond percolation 
and also have similar connectivity properties. Just as in bond percolation, a spanning 
path for a SAW on one cell does not always connect to another on the other cell when 
two cells are connected. However, the connectivity problem can be treated better with 
our centre rule than the corner rule and edge-centred rule, for which most of the 
spanning SAWS do not terminate at the starting point on the next cell. Moreover, 
Reynolds et a1 (1980) have argued that the error due to approximation in the PSRG 

for percolation should vanish in the large-cell limit; such arguments may also apply 
to our centre rule. 

The rest of the PSRG procedure is the same as that used in the previous SAW 

calculations, except that we may be allowed to consider only the cell-to-cell PSRG for 
each of the two families of cells separately. Nevertheless, we will first try a cell-to-bond 
PSRG. We sum the statistical weights for all spanning paths of SAWS that traverse a 
cell of size b in the top-bottom direction via the origin to obtain a polynomial G b ( K ) ,  
which is then renormalised to a vertical bond with fugacity K '  to yield a recursion 
relation K ' =  Gb(K) .  From this recursion relation, we obtain the non-trivial fixed point 
K *  and the critical exponent v through the formula (see Stanley er a1 1982) 

v = In 61111 A, (1)  

with A = (dGb(K)/dK)/ ,* .  For the sake of convenience, cells are represented by 
graphs such as those in figure 1,  where ( a ) - ( c )  are graphs corresponding to the b = 2-4 
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Figure 1. Graphs representing some cells on square and simple cubic lattices. The graphs 
( a ) - ( c )  represent the b = 2-4 cells on the square lattice, while the graph ( d )  represents the 
b = 2 cell on the simple cubic lattice. Open circles indicate terminals and full circles indicate 
the starting points for spanning SAWS. 

cells on a square lattice and ( d )  corresponds to the 6 = 2 cell on a simple cubic lattice. 
For the square lattice, the graph in figure l (a)  for the b = 2 cell can be spanned by 
three paths, one is a two-step walk and two are three-step walks. Thus, we obtain 

G , ( K )  = 2~~ + K ~ ,  ( 2 )  

which when renormalised to K '  leads to a recursion relation having a non-trivial fixed 
point K *  = 0.5. The critical exponent calculated from ( 1 )  gives v = 0.7565. Although 
the value for K *  is too large, v is surprisingly accurate. 

The graph shown in figure l ( b )  for the b = 3 cell can be broken into nine graphs 
illustrated in figure 2 according to the specific combination of bonds originating from 
the starting point. Each graph in figure 2 has been simplified by deleting the bonds 

Figure 2. Graphs separated from figure I ( b )  according to specific combination of bonds 
originating from the starting point. Inaccessible bonds for SAWS are deleted for clarity. 

which are inaccessible to a SAW in that graph. Since seven of these graphs have three 
spanning SAWS, these nine graphs are spanned by 23 SAWS, which can easily be obtained 
and summed to give 

G3( K )  = 4 K 7  + 4 K 6 +  8 K 5 + 6 K 4 +  K' .  (3) 
Renormalising G , ( K )  into a single bond and using ( l ) ,  we obtain K *  = 0.4275 and 
v = 0.7566. The value for v seems to be slightly worse than for the 6 = 2 case, but we 
recall that they belong to a different family of cells. Another choice of the origin can 
be made for the 6 = 3 cell. The corresponding graph is similar to that of figure 1 (6)  
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with the origin displaced to the right. From this graph, we obtain K *  = 0.4847 and 
v = 0.7508. 

We have evaluated G4( K )  using figure 1 (c )  which corresponds to the b = 4 cell. 
The result is 

G4( K )  = 14K l 3  + 40K 

Renormalisation of G4( K )  leads to K *  = 0.4147 5nd v = 0.7526 which are less than 
the corresponding values for the b = 2 case and seem to converge rapidly. Our value 
for v calculated using the b = 4 cell is already lesi; than the extrapolated value v = 0.756 
of Redner and Reynolds (1981). Thus, if the trend continues, v should converge to a 
smaller value. However, the results of our cell-to-bond PSRG may not be reliable. 

We now perform a cell-to-cell PSRG by setting G4( K )  = G,( K') to yield a recursion 
relation which has a non-trivial fixed point K * = 0.3886. The critical exponent calcu- 
lated from the formula v =In 2/ln h with A =[(dG,(K)/dK)/(dG,(K)/dK)],* gives 
v = 0.7471. Our K*  value is greater than the K, value of Sykes er a1 (1972) by 2.5% 
and v is less than the classical value 0.75 by only 0.4%. 

Our centre rule can readily be applied to other lattice animals and lattice statistical 
problems as well as kinetic aggregation models which are characterised by an origin. 
Also, extension to the three-dimensional system is straightforward. For a simple cubic 
lattice, for example, the spanning SAWS that traverse the b = 2 cell can be obtained by 
inspecting figure 1 ( d )  to give 

+ 52 K " + 56K l o +  56 K9+45 K 8 +  38K7+ 24K6+ 8 K 5 - t  K4. 

G , ( K ) = 8 K 5 + 6 K 4 + 4 K 3 +  K2,  (5) 

which when renormalised to a single bond leads to K *  = 0.3184 and v = 0.6235. These 
results are comparable to the existing ones: K,=0.2135 (Watts 1975), v=O.6 (Flory 
1953), v = 0.588 (le Guillou and Zinn-Justin 1980) and v = 0.595 (Alexandrowicz 1983). 
The corner rule has been applied to the simple cubic lattice by Family (1981) who 
obtained K * = 0.297 and v = 0.588 for the b = 2 case. However, the results for b = 3 
lead to v = 0.58 1 which seems too small, although K * = 0.276 is still reasonable (Family 
1981, Stanley er a1 1982). It is therefore interesting to see if there is a systematic 
improvement for K * and v for larger cells using both the cell-to-bond and the cell-to-cell 
PSRGS with our weight function. 

In conclusion, we have proposed a true centre-rule weight function for a PSRG 

approach to the SAW problem. Our centre rule seems to be more natural and straightfor- 
ward and gives good results with little effort. Also, it seems questionable whether our 
centre rule can lead to a v value for the square lattice that conforms to the estimated 
value of Redner and Reynolds (1981) using the toroidal rule. Therefore, we believe 
that a definite value for v in two dimensions still remains to be obtained and more 
work using our weight function as well as other plausible weight functions is needed, 
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